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We report experimental results on structure identification of nonlinear systems by a steady-state control
method. The idea underlying the method is to drive the nonlinear system to steady state by applying a suitable
feedback control input. It turns out experimentally that this control-based structure identification method can be
used for some applications, such as estimation of initial conditions and state variables of nonlinear systems and
structure identification of some special elements. Two attractors of the Chua oscillator are presented to illus-
trate the reliability of the suggested techniques under the hypotheses of measurable state variables and physical
access to the system for implementing the proportional feedback.
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I. INTRODUCTION

Mathematical models can be used to quantitatively under-
stand dynamical behavior of natural or artificial systems. In
some cases, the structure of these mathematical models can
be derived from first principles and only some model param-
eters have to be determined from experimental data. This
problem has been well studied in the literature and recently
has regained considerable interest especially for chaotic sys-
tems. Several methods have been suggested based on auto-
synchronization �1–12� �such methods derive from the basi-
lar concept of synchronization in chaos theory �13–15��,
balanced synchronization �16,17�, partial synchronization
�18,19�, parametric optimization �20–23�, nonlinear filters
�22,24�, or special properties of the feedback structure in
systems with delayed feedback �25�. The problem of param-
eter estimation in time-delay systems has been recently ad-
dressed with specific techniques �26,27�. In particular, in �26�
to estimate the delay time the idea of disturbing the system
by a short-correlated noisy signal of large amplitude is ex-
ploited, and the delay is then identified by analyzing the
correlation function, while in �27� it is the analysis of the
system response to regular external impulsive perturbations
that allows the reconstruction of the time-delay system pa-
rameters.

However, many parameter estimation methods are appli-
cable under the assumption that the structure of these math-
ematical models is known accurately and their performance
may dramatically be deteriorated even in the presence of
small structure error. In practice, however, the structure of
the mathematical models usually is not or only partially
known. Therefore, to understand the dynamical behavior of
systems of interest, one first has to identify the system struc-
ture. Such an issue has not been fully investigated especially
for complex dynamical systems.

Recently, the use of control-based methods for estimating
the structure of complex systems has been investigated in

several works �28–32�. The idea underlying the method is to
drive the system to steady states by adding to the system
suitable feedback control inputs. The method has been suc-
cessfully applied to the identification of the system dynamics
�28�, to estimate the topology of a complex network �29,30�,
and to identify the delays underlying a nonlinear dynamical
system �31,32�. In this article, we report experimental struc-
ture identification of chaotic circuits using the control-based
method and show that the control-based structure identifica-
tion method can be applied to some applications of physical
interest, such as system modeling and structure identification
of some special elements.

To illustrate the reliability of the suggested techniques, we
consider a Chua oscillator described by the following dimen-
sionless equations �33�:

ẋ1 = ���x2 − h�x1�� ,

ẋ2 = ��x1 − x2 + x3� ,

ẋ3 = ��− �x2 − �x3� , �1�

with h�x�=m1x+0.5�m0−m1���x+1�− �x−1��. The Chua oscil-
lator is a well-known generalization of the Chua’s circuit, in
the sense that it can implement all the dynamics of the
Chua’s circuit �34,35� and, moreover, every dynamics that
can be generated by any member of the Chua’s family can be
obtained in the Chua oscillator. So, quoting Chua �36�, this
circuit represents “structurally the simplest and dynamically
the most complex member of the Chua’s circuit family.”

In this paper, two chaotic attractors generated by the Chua
oscillator are taken into account. The two chaotic attractors
correspond to two different sets of parameters. In the two
experiments, the nonlinearity has the same qualitative form,
but different parameters. The slopes of the two considered
nonlinearities also differ for their sign, this leads to two dif-
ferent circuits constituting two interesting case studies.

From Eq. �1�, the classical double scroll attractor shown
by the Chua’s circuit is obtained for the following param-
eters: �=1, �=9, �=14.286, �=0, m0=−1 /7, and m1=2 /7.
The double scroll attractor shown by this circuit is reported
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in Fig. 1. The second circuit is obtained for the following set
of parameters: �=−1, �=−1.5601, �=0.0156, �=0.1581,
m0=0.7562, and m1=0.9575. The experimental attractor ob-
tained with these parameters is shown in Fig. 2.

II. THEORY

Let us consider a generic nonlinear system described by

ẋ = f�x� , �2�

where x= �x1 ,x2 , . . . ,xn�T�Rn represents the state vector and
f= �f1 , f2 , . . . , fn�T :Rn→Rn is the dynamics of the system.

Let us then add to system �2� a control input of the fol-
lowing form:

u = − k�x − �� , �3�

so that the controlled system reads

ẋ = f�x� − k�x − �� , �4�

where the gain matrix k=diag�k1 ,k2 , . . . ,kn� is a diagonal
matrix with nonnegative elements ki and �
= ��1 ,�2 , . . . ,�n�T�Rn is a constant vector to be specified.

It has been shown �28� that if a proper gain matrix k is
used, the system �4� can be driven to a steady state �ẋ=0�
satisfying,

f�x� = k�x − �� . �5�

To estimate the function f�x�, one needs to apply Eq. �5� with
m different values of the constant vector �. In this way m
different data pairs �xm ,k�xm−�m�� can be obtained to rep-
resent the input-output relation of the function f, from which
the function f can be estimated. In particular, we will show a
neural-network-based approach to estimate the function f
from the obtained data pairs �xm ,k�xm−�m��. In fact, the
Cybenko theorem �37� guarantees that a single hidden-layer
feed-forward neural network is capable of approximating any
continuous multivariate function to any desired degree of
accuracy from the input-output data pairs.

Especially, if the system Eq. �4� is driven to a steady state
under the control signal Eq. �3� with kj =0 for all j� i �that
is, only the i-th equation is controlled�, then one gets

f i�x� = ki�xi − �i� , �6�

which can similarly be applied to uncover the structural in-
formation �or property� of the function f i.

Above analysis has explicitly shown the basic principle of
the control-based structure identification method. Here, we
focus on its potential applications of physical interest.

A. System modeling

As a first potential application, the control-based structure
identification method can be applied to system modeling.
Actually, after the function f has been estimated with arbi-
trary accuracy by using neural network approximation tech-
niques �37�, the following equation:

ẏ = f�y� , �7�

can thus be considered as a model to represent system �Eq.
�2��, where the function f is an estimation of function f.
Therefore, one may analyze the dynamical behavior and
properties, the estimation of the initial conditions, and the
synthesis issues of system �2� using the model �7�.

1. Analyzing the dynamical behavior of a system from its model

It is usually difficult to analyze the dynamical behavior of
a nonlinear system �esp. chaotic system� because: �i� it is
sensitive to initial conditions and system parameters; and �ii�
one, in practice, often cannot change the initial conditions of
a nonlinear system. However, one may change the initial
conditions of the model very easily. As a result, one can
numerically analyze the influence of the initial conditions on
the attractor structure or phase trajectories.

2. Estimating initial conditions of a nonlinear system

Let us consider the system �2� with initial conditions
x�0�=x0, which actually reads

ẋ = f�x,x0� , �8�

and its model �7� with initial conditions y�0�=y0, given by

ẏ = f�y,y0� . �9�

If x0=y0, system �8� and its model �9� may synchronize iden-
tically with each other at least in the very beginning stage,

FIG. 1. Experimental results: projection on the x2−x3 plane of
the double scroll attractor. Horizontal axis: 1 V/div; vertical axis
200 mV/div.

FIG. 2. Experimental results: projection on the x2−x3 plane of
the chaotic attractor obtained by the Chua oscillator with param-
eters �=−1, �=−1.5601, �=0.0156, �=0.1581, m0=0.7562, and
m1=0.9575. Horizontal axis: 2 V/div; vertical axis 200 mV/div.
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even when system �8� is chaotic, that is, �y�t�−x�t���� for
all 0� t�Ts, with sufficiently small � and proper Ts. Other-
wise, both systems generally cannot synchronize identically
with each other and the synchronization error Es, simply de-
fined by 	i=1

N �y�iT�−x�iT�� with proper sampling interval T,
is a function of the variable y0−x0 and x0 can roughly be
estimated by searching the minimal value of Es.

3. Synchronization between a system and its model

Let us now move to analyze synchronization between a
system and its model through adding proper unidirectional
and bidirectional couplings, and revisit system �2� and its
model �7� as an illustrating example. We first treat the unidi-
rectional coupling case and add the coupling term −��y
−x� to the right hand side of Eq. �7�, where �
=diag�	1 ,	2 , . . . ,	n� denotes the coupling strength vector.
In this case, the error system reads,

ė = f�e + x� − f�x� + f�x� − f�x� − �e , �10�

where e=y−x.
When the coupling strengths 	i increase gradually and are

beyond a critical value, the error system Eq. �10� may run
into a small neighborhood around the origin point, since
f�x�
 f�x� is satisfied for any x. In particular, if the identical
synchronization manifold holds through unidirectional cou-
plings of partial state variables �i.e., 	i=0 holds for some i�,
then the remaining state variables of system �2� can be esti-
mated by the model. In this case, the model can actually be
taken as a state observer for system �2�. The above analysis
can be extended to the bidirectional coupling case. One may
significantly declare that the model �7� is good if the identi-
cal synchronization between system �2� and the model �7�
holds through adding proper unidirectional and bidirectional
couplings.

B. Identification of some elements of interest

In some applications, one may know partial structure of
the whole system as a preknowledge but the structure of
some functional elements may be unknown. For example, for
coupled systems given by

ẋ1 = g1�x1� + h1�x1,x2� , �11�

ẋ2 = g2�x2� + h2�x1,x2� , �12�

where x1�Rn and x2�Rn are state vectors of systems �11�
and �12�, respectively; g1 and g2 describe the node dynamics;
h1 and h2 are coupling functions. It is reasonable to assume
that the local dynamics of each system may be known ex-
actly but the coupling functions are not. It is of interest to
estimate functions h1 and h2. By the control-based method,
one may obtain estimated f1 and f2, where f1�x1 ,x2�
=g1�x1�+h1�x1 ,x2� and f2�x1 ,x2�=g2�x2�+h2�x1 ,x2�. Then
h1 and h2 can easily be estimated.

Many chaotic systems �including Lorenz system, Rössler
system, and Chua’s circuits� can be put in the form

ẋ = Ax + h�x� , �13�

where A is a constant matrix and the nonlinearity h�x� is the
essential element that may determine the existence and prop-

erties of chaos. To analyze the dynamical properties of sys-
tem �13�, one first has to estimate function h.

III. IDENTIFICATION OF THE CHUA OSCILLATOR
DYNAMICS AND NONLINEARITY

We apply control �3� to the Chua oscillator �1� and pro-
pose a method to identify either the whole structure of the
circuit or a part of it �i.e., its nonlinearity�. In the first case,
we only suppose that the order of the system is known and
the state variables are measurable and controllable. In the
second case, we suppose that only some important structural
information needs to be identified �in this case the i−v char-
acteristics of the nonlinear elements�.

The equations of the Chua oscillator with control �3� be-
come,

ẋ1 = ���x2 − h�x1�� − k1�x1 − �1� ,

ẋ2 = ��x1 − x2 + x3� − k2�x2 − �2� ,

ẋ3 = ��− �x2 − �x3� − k3�x3 − �3� , �14�

where positive ki are control gains and �i are constants to be
specified. In the following the two cases are described more
in detail.

A. Identification of the Chua oscillator dynamics

Let us first consider the case in which the whole structure
of the circuit has to be identified. As it is the case of the
implementation of the Chua oscillator under examination
�33�, all the state variables are assumed measurable.

We start from Eq. �14� and follow this algorithm:
�1� We apply the control and let �= ��1 ,�2 ,�3�T vary so

that we obtain m pairs: �xi ,�i�.
�2� From Eq. �5� we calculate f�x�=k�x−
i�, so that to

obtain m pairs: �xi , f�xi��.
�3� We can now apply an identification technique to de-

velop a model fitting the data obtained at point 2 �i.e., pairs
�xi , f�xi���. In particular, we use an approach based on neural
networks. In fact, the Cybenko theorem �37� guarantees that
a single hidden-layer feed-forward neural network is capable
of approximating any continuous multivariate function to
any desired degree of accuracy.

The approach illustrated for the Chua oscillator can be
easily adapted to any other continuous nonlinear system and
is quite independent of the particular identification technique
adopted. Other identification techniques can be used in step
3. The approach described provides a black box model of the
chaotic dynamics and not a reconstruction of the attractor or
the learning of the state variable trends.

B. Identification of the Chua oscillator nonlinearity

Let us now suppose that the only unknown part of the
Chua oscillator dynamics is the nonlinearity h�x�. Moreover,
let us suppose that ki are such that steady-state control is
effective. Let us focus on the first equation of Eq. �14� and
set ẋ1=0 to obtain,
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h�x1� = x2 −
k1�x1 − �1�

��
. �15�

Fixed �1, �2, and �3, Eq. �15� gives us a value for h�x1�. By
varying �1, �2, and �3 we can have a set of measures for
h�x1��1 ,�2 ,�3�� and use them to identify the nonlinearity
appearing in the circuit.

In our case, it can be demonstrated that varying just one
parameter ���1 is enough to have a complete set of mea-
sures to identify the nonlinearity h�x1�, since the steady-state
value of variable x2 is a function of that of x1. In practice, we
kept constant �2 and �3 �to the values �2=0 and �3=0�. In
Sec. IV, we compare the ideal form of h��� with experimen-
tal data.

IV. EXPERIMENTAL RESULTS

A. Description of the experimental setup

The Chua’s circuit �and its generalization known as the
Chua oscillator� is one of the most studied third-order cir-
cuits able to show a large variety of chaotic attractors and
bifurcation phenomena. During the years, many different
implementations of the original circuit and, in particular, of
its nonlinear element, the Chua’s diode, have been intro-
duced �33�. Among such possible implementations of the
Chua oscillator the one based on Cellular Nonlinear Net-
works �CNN� �i.e., the so-called CNN-based implementa-
tion� has been chosen in our experiments. We will not de-
scribe in details this implementation, accurately dealt with in
�33�, but we briefly discuss the motivation for this choice and
show the complete circuit diagram �including the modifica-
tion for the introduction of the steady-state control�.

In the CNN-based implementation of the Chua oscillator
�33,38,39� all the physical variables implementing the state
variables of Eq. �1� are voltages across capacitors �in particu-
lar, x1 is the voltage across C1, x2 across C2 and x3 across
C3�. The circuit makes use of properly configured opera-
tional amplifiers for implementing the mathematical opera-
tions appearing in Eq. �1�. Furthermore, it exploits the satu-
ration nonlinearity of an operational amplifier to implement
the piecewise nonlinearity h�x�.

Since in this implementation, the state variables are easily
accessible, the steady-state control in Eq. �4� can be easily
implemented. In practice, the generic feedback term −k�x
−
� of Eq. �14� �with x= �x1 ,x2 ,x3� and 
= ��1 ,�2 ,�3�� is
implemented by introducing a further operational amplifier
in the circuit with two inputs, i.e., the state variable x and the
reference voltage 
. The gain of such generic block shown
in Fig. 3 is given by g=−

Rf

Rd
and is chosen so that

Rf

Rd
=k.

We used two Chua oscillators with different parameters,
the first circuit is the classical Chua’s circuit exhibiting the
double scroll Chua’s attractor where the implementation de-
scribed in �38� is adopted; the second is a Chua oscillator
designed to implement another chaotic attractor and devel-
oped following the guidelines discussed in �33�. In particular,
we discuss the results of the application of the method to
identify the whole dynamics to the classical Chua’s circuit
and, then, describe the case of the identification of the non-

linear elements for the two circuits. In fact, both have quali-
tatively the same nonlinearity �i.e., a piecewise linear func-
tion�, but the slopes m0 and m1 of their nonlinearities are not
equal and, in particular, have different signs. This along with
the different sign of the parameters � and � lead to two
different case studies. The two circuits �including the con-
trol� are shown in Figs. 4 and 5.

In the first circuit the control is represented by operational
amplifiers U5-U7, while the rest of the circuit is the CNN-
based implementation of the Chua’s circuit. The parameters
of this part of the circuit have been chosen according to �38�:
R1=3.9 k�, R2=12 k�, R3=5.6 k�, R4=22 k�, R5
=22 k�, R6=450 �, R7=100 k�, R8=100 k�, R9
=100 k�, R10=100 k�, R11=100 k�, R12=1 k�, R13
=8.2 k�, R14=100 k�, R15=8.2 k�, R16=100 k�, R17
=1 k�, R18=82 k�, R19=82 k�, R20=1000 k�, R21
=1000 k�, R22=12.1 k�, R23=1 k�, C1=100 nF, C2
=100 nF, and C3=100 nF.

The parameters of the part of the circuit implementing the
steady-state control have been chosen to set the control gain
to k1=3 and k2=k3=1: R24=300 k�, R25=100 k�, R26
=100 k�, R27=300 k�, R28=100 k�, R29=100 k�, R30
=50 k�, R31=100 k�, R32=100 k�, R33=50 k�, R34
=22 k�, R35=100 k�, and R36=100 k�. TL084 have been
used as operational amplifiers.

Without control the circuit generates the double scroll
Chua’s attractor shown in Fig. 1. When control is activated,
the circuit is controlled to a steady-state constant behavior
�stable fixed equilibrium point� whose value depends on �.

In the second circuit the control is represented by opera-
tional amplifiers U6-U8, while the rest of the circuit imple-
ments the Chua oscillator. The parameters of this part of the
circuit have been chosen according to �38�: R1=22 k�, R2
=11.2 k�, R3=22 k�, R4=23.3 k�, R5=23 k�, R6
=670 k�, R7=100 k�, R8=100 k�, R9=50 k�, R10
=100 k�, R11=100 k�, R12=1 k�, R13=630 k�, R14
=84.6 k�, R15=23.5 k�, R16=100 k�, R17=22 k�, R18
=1 k�, R19=1000 k�, R20=75 k�, R21=75 k�, R22
=12.1 k�, R23=1 k�, R24=1000 k�, R26=500 k�, R27
=15.5 k�, R28=50 k�, R29=22 k�, C1=100 nF, C2
=100 nF, and C3=100 nF.

The parameters of the part of the circuit implementing the
steady-state control have been chosen to set the control gain
to k1=k2=k3=5: R30=20 k�, R31=20 k�, R32=100 k�,
R33=100 k�, R34=100 k�, R35=100 k�, R36=20 k�,
R37=20 k�, R38=16.6 k�, R39=16.6 k�, R40=23 k�,
R41=100 k�, R42=100 k�, R43=23 k�, R44=100 k�,

FIG. 3. Generic block used to implement the steady-state
control.
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and R45=100 k�. TL084 have been used as operational am-
plifiers.

Without control the circuit generates the chaotic attractor
shown in Fig. 2. When control is activated, the circuit is
controlled to a steady-state constant behavior �stable fixed
equilibrium point� whose value depends on �.

The whole experimental setup consists of the Chua oscil-
lator, a voltage power supply, voltage generators used to vary

�, and an acquisition board �National Instruments AT-MIO
1620E� used to acquire the data.

B. Identification of the whole dynamics

Let us first discuss the experimental results related to the
identification of the whole dynamics of the classical Chua’s
circuit �shown in Fig. 4�. We fixed �, waited that the circuit

FIG. 4. The Chua oscillator �including the control circuitry� generating the double scroll strange attractor shown in Fig. 1.

FIG. 5. The Chua oscillator �including the control circuitry� generating the strange attractor shown in Fig. 2.
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reached the steady-state and then acquired x. From Eq. �5�
the corresponding value of f�x� was then derived. The pro-
cess was repeated N times. More in detail, we used 11�11
�11 �i.e., N=1331� pairs of data �xi , f�xi��.

A neural network with 18 hidden neurons was then
trained for 3000 epochs. The data were divided in 50% as
training set, 25% as validation set, and 25% as test set. The
neural network model was then compared with the real data
as shown in Fig. 6. Due to the sensitivity of chaotic systems
to initial conditions the trajectories of the model and of the
real system diverge, but the structure in the phase plane �i.e.,
the attractor� is clearly the same.

C. Estimation of the initial conditions

As a possible application of our approach, we studied the
problem of estimating the initial conditions of the Chua os-
cillator. We assumed that only one circuit state variable
�namely the variable x1� is available �it can be demonstrated
�40� that linear feedback control on this state variable is suf-
ficient to stabilize a fixed equilibrium point in the Chua os-
cillator dynamics�. We then simulated the neural network
model for a time interval 0.8 s �which is sufficiently long if
compared to the characteristic frequencies of the circuit hav-
ing maximum frequency in the order of magnitude of some
kilohertz� and searched for that part of such trajectory mini-
mizing the synchronization error defined on the basis of the
only information available: Es=	i=1

N �y1�iT�−x1�iT��. We
fixed Ts=3 ms �which, given a sampling rate of f =50 kHz
corresponds to N=150 samples�. The initial conditions of the
model are used to estimate the real ones. Following this ap-
proach, we obtained y1�0�=1.3069, y2�0�=0.2083, and
y3�0�=−0.5055, which provide a good estimation of the real
initial conditions of the circuit: x1�0�=1.2830, x2�0�
=0.1870, and x3�0�=−0.4710. Figure 7 shows the compari-
son between the trend of the model state variables and that of
the circuit state variables. The accuracy of the initial condi-
tions estimation can be increased by taking into account a
longer simulation time interval at the expenses of increasing
computational efforts. However, due to sensitiveness of cha-
otic systems to initial conditions, the obtained accuracy is

satisfying for the purpose, i.e., to provide insight on working
conditions of the real system, eventually in the perspective of
short-term prediction.

D. Synchronization between the Chua oscillator and its model

As discussed in Sec. II the model derived through the
steady-state control method can be validated by studying if
adding unidirectional or bidirectional coupling it can be syn-
chronized with the nominal model of the system. In fact, in
our case, the nominal model of the circuit can be easily de-
rived, since the equations of the Chua oscillator are known
and the parameters really implemented in the circuit can be
accurately measured. The need for such preliminary opera-
tion �to derive the circuit model� is further motivated in the
next Section, showing how the nominal parameters of Eq. �1�
cannot be used in a realistic model.
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−3 −2 −1 0 1 2 3 4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x (V)

y
(V

)

Simulated attractor
Real attractor

FIG. 6. �Color online�. Experimental results: comparison be-
tween a real double scroll strange attractor and the attractor gener-
ated by the neural network model.
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Figure 8 shows the results of a simulation in which the
neural network model is bidirectionally coupled �through the
state variable x1� to the nominal model of the Chua oscillator.
As the obtained results clearly demonstrate, the synchroniza-
tion error e�t� is close to zero �after the transient, �e�t��
�0.15 V� and identical synchronization holds.

E. Identification of the nonlinear elements

Let us now focus on the possibility of using the approach
based on steady-state control to identify some important part
of the system �such as coupling or nonlinear elements�,
known the remaining part of the dynamics. In particular, let
us suppose that the nonlinearity of the Chua oscillator has to
be identified. Without any lack of generality we set: �2=0,
�3=0, and ���1.

Experimental results have been obtained by varying �,
acquiring x1���, x2���, and x3��� and then applying Eq. �15�
to calculate the estimated nonlinearity.

Figures 9 and 10 show the comparison between the mea-
sured nonlinearity and the ideal one for the two circuits. In
both figures the continuous line represents the ideal �simu-
lated� curve, while squares represent experimental data.
From the analysis of Fig. 9 it can be derived that the break-
points of the nonlinearity are not accurately implemented in
our circuit, and the real values are slightly larger than the
ideal ones. The presence of such error has no particular con-
sequences since the double scroll Chua’s attractor is robust to
small parameter variations and, in fact, the implemented cir-
cuit makes use of off-the-shelf resistors with 5% tolerance. A
posteriori we have effectively verified that the resistances
implementing the breakpoint parameters do not have very
precise values.

The same consideration does not apply to the second cha-
otic attractor, which is quite sensitive to parameter changes.

The circuit exhibiting this attractor has been implemented by
using off-the-shelf resistors with 1% tolerance. The analysis
of Fig. 10 reveals that data fit quite well the ideal nonlinear-
ity.

We remark that, since linear feedback control on the state
variable x1 is sufficient to stabilize a fixed equilibrium point
in the Chua’s circuit dynamics �40� and 
2=
3=0 in all the
identification process of the nonlinearity, h�x1� can be also
identified by controlling only the first state variable.

V. CONCLUSIONS

We have shown that driving a system to steady states is an
effective method for the identification of the dynamics of a
nonlinear system �e.g., chaotic circuit�. The method consist-
ing of the introduction of a feedback control input in the
complex system has proved, under the hypotheses of mea-
surable state variables and physical access to the system for
implementing the proportional feedback, to be effective in
the estimation of attractor structure, initial conditions, state
variables, or structure of some elements of interest. In this
work, we have experimentally verified the suitability of the
method by taking into account the problem of estimating
initial conditions of a chaotic circuit and identifying the dy-
namics of a chaotic circuit or some important part of it �such
as the nonlinearity�. In particular, two different cases �two
attractors of the Chua oscillator� have been examined. The
experimental results shown in the paper demonstrate the suit-
ability of the method in real hardware experiments, despite
the presence of noise and parameter tolerances.
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